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Abstract

Neural nets frequently outperform other approaches in classification and regression,
and have become immensely popular in uses ranging from automatic recognition of
handwritten zip code digits to speech recognition on mobile phones. A neural net
defines a function with a very large number of tunable parameters that must be learned
so the function’s output matches the labels this dataset. However, the training of
large networks can take days or weeks; as a result, much attention has been given to
optimizing networks.

In this project we demonstrate two different approaches to speed up the training of
neural nets. First, even before training, we demonstrate an informed way of initializing
parameters closer to their final, trained values. Second we introduce a new training
algorithm that scales linearly when parallelized, allowing for substantially decreased
training times on large datasets.

Neural nets are famously unintuitive, and as such, parameters are typically ran-
domly assigned, then adjusted during training. However, by using a cosine activation
function, a layer of neurons can be made to approximate the implicit feature space of a
kernel. Therefore, intuition on kernel selection can guide initial parameter assignments
even before any data observations. We implement this approach and show that it can
greatly speed up training, often approaching the final accuracy after only one training
iteration.

Our second contribution was in the application of the ADMM algorithm to neural
nets. Conventional gradient based optimization methods for neural nets scale poorly
which is difficult to avoid with extremely large datasets. The proposed method avoids
many of the conditions that typically make gradient based methods slow, allowing for
efficient computation without specialized hardware. Our implementation demonstrates
strong scalability with linear speedups even up to thousands of cores. We show that for
large problems, our approach can converge faster than GPU-based implementations of
standard algorithms.

Keywords: Machine Learning, Neural Networks, Optimization, Classification
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1 Introduction

What is in an image? Is the picture taken outdoors? Is there a person within the image? How
about a dog? Is there grass or was it taken in a desert, or indoors? Humans are naturally
capable of distinguishing between all sorts of objects without thinking. For instance, it is
easy to understand that the rolling chair the author is sitting on right now and the four-legged
chair the author will sit on tonight for dinner are both chairs while having very different
properties and appearances. How is it that we are so aptly able to make generalizations
about objects of similar type? There must be some understanding of a chair that everyone
has, but how do we quantify that understanding? Could a computer learn to make these
same generalizations and learn what a chair is?

The problem mentioned above is known as classification. In classification, a machine is
given a number of labeled examples (for example, pictures with dogs and pictures without
dogs), and learns to distinguish between the different classes so that when shown a new,
unlabeled data point, it identifies it accurately. One way computers classify data is using
a mathematical model with many adjustable parameters known as a neural network. This
model is trained by incrementally adjusting these parameters until the model classifies data
points with known classification, the training set, successfully. It is assumed that parameter
values which correctly classify labeled examples will also correctly classify new, unlabeled
examples known as the test set. A closely related problem is that of regression. In regression,
rather than than being placed in one of several discrete classes, the data point must be placed
correctly on a continuous number line.

Neural nets are a popular method to classification and regression as they have recently
begun to frequently outperform other approaches. However, training of large networks can
take a substantial amount of time (on the scale of days or weeks)[16], as they often require
the tuning of thousands of parameters. As a result, substantial attention has been given to
optimization methods for training networks [10, 20, 24, 34]. The goal of this project is to
build upon current methods to make training faster.

1.1 Background

Neural nets are networks of interconnected units called neurons, where each neuron consists
of input features, weights, and a nonlinear activation function (Figure 1). Features are
numerical values describing a data point; for example, the features of an image may be its
pixel values. Together the features of a data point are known as its feature set.

In each neuron, the features are linearly combined using a set of weights; this combination
is fed into the activation function, which produces the output of the neuron. An individual
neuron (i.e. perceptron) can itself be used as a binary classifier [29]. One possible activation
which makes sense in this case is the step function (Figure 2a). Here the combination of
weights and features are a continuous input which get mapped to either 0 or 1, the classes.
However, to enable the learning process, it is desirable for the function to be differentiable,
leading to several useful approximations. A perceptron classifier using a logistic sigmoid
(Figure 2c) can be interpreted as returning the probability of a data point belonging to class
1 (this type of perceptron classifier is also known as logistic regression). This property is
lost in more complex settings, and is more computationally expensive than the hyperbolic
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Figure 1: The left image displays a single neuron of a neural network. The input features φl−1
are weighted by parameters wl, and summed. The output is then fed through an activation
function σ(·), producing the output φl. The image on the right depicts a neural network
with two hidden layers and one output layer. The input to any neuron is the output from
the previous layer or original features if the first layer. This pattern continues until the final
output of the network.

tangent (Figure 2b) [19]. Recently, the ReLU activation (Figure 2d) has become a popular
choice due to its computational simplicity [13].

In the most common arrangement, neurons are arranged in layers where the input to each
neuron in the layer is the output from all the neurons in the previous layer. The network
functions by propagating the input to the first layer, the data’s feature set, through the
network to the final layer where the output, the supposed classification, is produced. This
arrangement allows for highly nonlinear and complex classification and regression models
capable of approximating nearly any function (for example, [8, 11, 15]).

1.2 Mathematical Formulation of Neural Nets

Let φ0 represent a k1 × n matrix of all n training points, each of which is described by k1
features; more generally, let φl−1 be the kl × n matrix representing the input matrix of all
data to the lth layer and the output of the (l− 1)th layer. Additionally, let wli represent the
1 × kl weights of the ith neuron in layer l, and let Wl represent the ml × kl concatenation
of all weight vectors for the ml neurons in layer l. Finally, let σ(·) be a nonlinear activation
function. We can then mathematically represent the entire L-layer network concisely with

φL = WLσL−1(. . . σ2(W2σ1(W1φ0)) . . . ). (1)

φL is the predicted classification for the n data points described in φ0. On an output
node, the resulting value may be interpreted as a likelihood (in a colloquial sense) of the
data being a member of a particular class. Note, the amount of data stored and transmitted
during the learning process not only depends on the number of data points but also on the
number of features for each data point and size of the network.
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(a) Step (b) Hyperbolic Tangent

(c) Logistic Sigmoid (d) ReLU

Figure 2: These graphs depict activation functions. The step function is approximated by
both the hyperbolic tangent and logistic sigmoid functions and is useful as an example for bi-
nary classification. The ReLU function is currently a popular choice due to its computational
simplicity.
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1.3 Goal of Training

The only way to change the output of the network is by changing the weights - unfortunately,
neural nets describe extremely complex functions, resulting in little intuition or theory de-
scribing appropriate weight values [22, 16, 12, 14, 31]. Therefore, weights are randomly
initialized and iteratively updated during training until the network output closely matches
the known classification of the labeled dataset (for example, [19]). The resulting weights
are then mathematically useful, though not meaningful to humans. We now describe this
training process in more detail.

The goal of training is for the output of the net φL to be as close as possible to the known
output, t (t ≈ φL). The difference can be measured by �(·, ·), a loss function describing the
distance between two vectors (for example, the L2 distance). We can describe training with
the optimization problem

minimize
W{0:L−1}

� (φL, t) . (2)

Training can occur in a number of ways, but the goal is the same for each. The weights
are iteratively updated in the direction which minimizes the objective function. Training is
complete when (2) converges, or stated alternatively, when the difference between t and φL

can no longer be considerably improved.

1.4 The Necessity of Data

While training, the goal is to create a model which can accurately predict labels for new
points not seen during the training phase. One problem that can arise during training is an
overly expressive model. In this scenario, the model nearly perfectly fits the training data
but fails to accurately perform classification on new unseen data points. This is known as
overfitting and is a common problem in many machine learning applications.

In a neural network, there often exists thousands tunable parameters. However, if the
number of parameters is too great for the given dataset, then overfitting can occur. In
figure 3, different regression models are produced using a variable number of parameters.
The model more accurately fits the training data as more parameters are introduced; as the
number of parameters increases, this begins to come at the expense of accurate predictions.
New y-values would be predicted based on the red line which for large numbers of parameters
is clearly an inaccurate representation of the data’s source.

One way to combat overfitting is through the introduction of more data. Even with a
large number of parameters, a significant amount of data ensures that overfitting is unlikely
and that the model fits the distribution from which the data was sampled, not the observed
training points. The size of datasets used for difficult classification and regression problems
is often in the range of several TB of data; though this effectively overcomes the overfitting
problem, it makes efficient computation much more difficult. One way to combat the effi-
ciency problem is through expensive, special-purpose hardware, such as GPUs manufactured
specifically for neural-net computation. In contrast, our approach is to improve the training
algorithms to better fit existing hardware.
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Figure 3: Each image displays a representation of a linear model used to fit the data with
varying numbers of nonlinear monomial features [3], where M indicates the number of such
features aside from the bias feature. So, the total number of unknowns in each image is
M + 1. The blue circles are noisy observations sampled from the green line. The red line is
the model’s prediction of what the curve should be. Note that though the model is a linear
combination of features, the features are nonlinear, resulting in a nonlinear prediction line.
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Figure 4: In these images [3], the usefulness of data is demonstrated. The green line again
represents the sine curve with the blue dots representing data taken from a noisy source. The
red line is the model’s prediction curve when there are 10 features (i.e. M = 9) and on an
increased number of data points (i.e. 10 data points in figure 3d compared to 15 and 100 in
the above). The left image contains more features and data than the figure 3d, and although
overfitting still occurs, the effect has been limited by an increase in data. The image on the
right shows how it becomes more difficult to overfit with an increase in the amount of data.
With 100 data points, an accurate model is produced even with 10 features.

1.5 Evaluating Success

In experiments, labeled data is typically split into two disjoint sets, a large training set, and
a smaller testing set. The effectiveness of the model is typically evaluated by measuring
the test set accuracy following the training of a network on the training set. The bar for
“success” is heavily dependent on the difficulty of the problem. Researchers have been able
to demonstrate remarkable accuracy on easy problems [33, 24], whereas on hard problems,
the state-of-the-art accuracy threshold is much lower [31]. Therefore, the success of imple-
mentations must be evaluated based on historical performance on the given dataset. For the
purposes of this project, our focus was on reaching state of the art accuracy while reducing
the amount of time spent on training.

2 Kernel Guided Weight Initialization

We introduce two techniques to speed up the process by which weights converge on their
final values: informed weight initialization and faster general purpose algorithms for weight
training. In this section, we focus on the first approach.

As the purpose of training is to obtain the optimal set of weights which minimize a cost
function, a natural way to increase the rate of training would be to initialize the weights
close to their final trained values. However, as weight initialization occurs prior to any data
observation by the network, this requires intuition by the creator of the network as to what
appropriate weight values should be. Unfortunately, neural nets are extremely unintuitive,
often with thousands of tunable parameters interacting in complex ways. Consequently, the
state-of-the art approaches simply rely on random initialization. We propose an alternative



10

(a) Features in 1-dimensional space
(b) Features in higher 2-dimensional
space

Figure 5: In these images, it is clear how feature engineering can be important in linear
models. In figure 5a, the line of points of two classes is impossible to separate linearly.
However, if an additional feature of x2 is added, the points in the higher two dimensional
space are linear separable as shown by the green line in 5b. Kernels allow for the use of
features in an extremely high dimensional space which likely allows for linear separation of
classes.

approach in which weights are initialized with kernel based intuition or a quick hyperparam-
eter search.

Kernels were originally introduced as an alternative to linear models which allow for
avoidance of feature set selection difficulties [21, 1], and have a long history in alternatives
to neural nets such as support vector machines [4] and Gaussian processes [28]. The intuition
leveraged in these approaches is that nearby points are likely to be of similar classification.
In order to define what “nearby” is, a kernel function on two points is defined. For exam-
ple, a common kernel function is a multivariate Gaussian centered around one of the points
entered into the function - the closer the points are, the larger the kernel value will be. A
“neighborhood” is then defined by the covariate matrix of the Gaussian. If a researcher be-
lieves two points need to be quite close for their relationship to be meaningful, she might use
a covariate matrix with small values. Because kernelized methods allow for the application
of this type of intuition given a particular dataset, we would like to combine the advantages
of kernels with neural nets. However, kernels have not traditionally fit into the neural net
paradigm.

2.1 Introduction to Kernels

Kernelized methods are usually introduced as an alternative to linear models, such as linear
or logistic regression. In linear models, the output is determined by a linear combination
of features, the weights for which are learned from the training data (recall that a single
neuron, common called a perceptron, is itself a linear model). In these models, the selection
of useful features is extremely important so the classification or regression is performed in
an advantageous space, as is illustrated in Figure 5; this choice of feature set is extremely
important, and frequently difficult (for example, [32]).
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Kernelized methods are derived from the dual representation of the linear model. This
dual representation allows for the problem to be defined in a way that does not require
the introduction of an appropriate feature set which is often difficult to come up with. By
working in terms of the dual, implicit feature spaces of high or even infinite dimensionality
can be utilized. This expressive space can ease classification as points of similar classification
are more likely to be separable from others in a higher dimensional setting than the original
low dimensional space.

A kernel function is defined as a similarity function,

k (x,y) = ϕ (x)T ϕ (y) , (3)

where x and y are two training points, k is the kernel function which defines a similarity
between x and y, and ϕ maps the inputs to a higher dimensional space.

2.2 Incorporating Kernels into Neural Nets

To incorporate kernels into neural nets, we approximate the kernel function through a linear
combination of Fourier bases. Rahimi and Recht [26] showed shift-invariant kernels can be
mapped to low-dimensional Euclidean inner product spaces through the use of a random
feature map

k(x,y) = ϕ(x)Tϕ(y) ≈ z(x)T z(y), (4)

where x, y ∈ Rd, Rd is the original feature space, ϕ is the implicit higher dimensional feature
space defined by the kernel, and z is the randomized feature map.

To calculate our feature map, we first evaluate the Fourier Transform p(ω) of the desired
kernel function where ω ∈ Rd. The kernel can then be evaluated in expectation

k(x,y) = E[zω(x)zω(y)] (5)

zω(x) =
√
2 cos(ωTx+ b), (6)

where ω ∼ p(ω) and b ∼ [0, 2π] [26]. Therefore, we can define the feature set

z(x) ≡
√

2

D
[cos(ωT

1 x+ b1) . . . cos(ωT
Dx+ bD)]

T , (7)

where ωi and bi are drawn independently from p(ω) and [0, 2π], respectively. The linear
space of this feature set approximates the linear space of the high-dimensional space ϕ.

Given this previous work, we propose the introduction of an alternative activation func-

tion
√

2
D
cos(·) to replace the more common logistic sigmoid, hyperbolic tangent, or ReLU

activation functions. This now means that we can approximate the linear space implied by a
kernel by initializing weights independently for each neuron in a layer, where ω ∼ p(ω) and
b ∼ [0, 2π]. Furthermore, assuming we have chosen a good kernel function, as the data is
linearly separable in the linear space of ϕ, they are likely to be separable in the linear space
of z as well.

This activation function offers two benefits. First, problems well suited to kernelized
approaches, such as those that lie on a lower-dimensional manifold, can now be approached
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Figure 6: The blue lines are tests run with cosine activation functions and intelligent initial-
ization, while the green lines are run with a traditional hyperbolic tangent activation and
random initialization. Both tests were run so that both the hyperbolic tangent and cosine
networks were set to an optimal setting. The graph on the left is for the Swiss roll dataset,
while the graph on the right is for the Google Streetview dataset.

in the same way by neural nets. Second, because a particular kernel implies the distribution
from which to sample the initial weights, the same intuition that frequently eases kernel
selection eases weight initialization, ultimately shortening training time. Even absent this
intuition, because kernel functions are defined over a small number of parameters, a quick,
small-dimensional parameter search is highly effective. For instance, in symmetric Gaussian
kernels, the search is simply over standard deviation, a one-dimensional space. All that needs
to be done is to test values of the standard deviation to determine which value performs the
best for the particular problem at hand. Given a sense of what kernel to use given a particular
dataset, our method provides a way to set up the weights of a layer of a neural net such that
it approximates this kernel function and requires little training.

2.3 Experimental Results

To test the effectiveness of the kernel-guided initialization, we evaluated our method on a
synthetic Swiss Roll and the real-world Google Streetview datasets. To do this, the neural
net package Torch was used to allow for highly-optimized standard optimization approaches.

The Swiss Roll dataset is a synthetic dataset consisting of 160,000 data points, 120,000
of which were used for training with the remaining being used for testing. The dataset was
generated by creating a 2-D ribbon in which opposing corners of the ribbon were of the same
class. This ribbon was then cast to a 3-D space to create the Swiss Roll shape (Figure 7).
The dataset was appropriate for this task as the data could not be linearly separated in the
original feature space which consisted of its x-, y-, and z-coordinates.

The Google Streetview [23] dataset consists of images of house numbers taken from the
Google Streetview car. Each data point consisted of a cropped image of a single digit which
was human-labeled. The goal was to determine which digit appeared in each of the images,
resulting in 10 classes; random chance is therefore roughly 10% accuracy. The dataset
contained 99,289 data points, 73,257 of which were used for training with the remaining
used for testing. For initial features, we used 684 Histogram of Oriented Gradients (HOG)
[9] features of the original images. The kernel we used was a symmetric Gaussian kernel;
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Figure 7: The left image displays examples of images taken from the Google Streetview
dataset [23]. The images used for training and testing were contained entirely within the
blue rectangles. The image on the right displays 2-D and 3-D representations of the Swiss
roll dataset.

we ran a preliminary hyperparameter search to discover the optimal standard deviation for
the distribution to be used when initializing the weights. The search was performed over a
single iteration of training with a number of different standard deviation values. The value
selected was the standard deviation which resulted in the highest test set accuracy.

The graphs (Figure 7) indicate the predictive accuracy of the neural net on the test set as a
function of training epochs. In both instances, a single hidden layer was utilized; the random
initialization trials used a hyperbolic tangent activation function. Quick hyperparameter
searches were performed to ensure the networks were set with ideal initial parameters to
ensure convergence was reached as quickly as possible. A grid search for the optimal learning
rate, and weight decay was done for each of the functions independently. An additional search
was done for the number of hidden nodes that was most effective for the hyperbolic tangent
activation functions; this architecture was then used by both approaches.

The graphs’ x-axes depict the number of epochs training occurred, where an epoch is
defined to be one update of the weights after training on a random subset of the data;
therefore, an increase in epochs results in generally improved accuracy. Initializing weights
in an intelligent manner gave the neural net with a cosine activation function far better
initial accuracy which led to substantially faster convergence and better overall performance
even after substantial training.

With the cosine activation function, we were able to obtain results better than the current
state of the art for a neural network with a single hidden layer. Furthermore, we were able
to show that while obtaining better results, the network converged substantially faster to an
optimal set of weights.

3 Improved General Use Algorithm

In this section, we introduce a new optimization method for training neural networks, which
is appropriate for very large datasets distributed across multiple machines. The manner in
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Figure 8: During gradient descent, the goal is to minimize an objective function by updating
the weights. The y-axis represents the value of the objective function while the x-axis
signifies the number of iterations. During each iteration, an update to the weights occurs
using gradient descent.

which weights are updated is traditionally through gradient methods [5, 18, 30, 6, 35]. To
motivate our new method, we first discuss these gradient methods and their weaknesses.

3.1 Gradient Descent

Gradient descent is a method by which an objective function f(w) can be minimized by
taking the gradient with respect to parameters w and updating the parameter values with
the update rule

wt+1 = wt + η∇f(w), (8)

where η is the learning rate. η plays a substantial role in performance by controlling the size
of the update, and usually requires substantial experimental tuning.

We demonstrate gradient descent with linear classification in a toy problem in Figures 8
and 9. As shown in Figure 8, initially, the objective function has a large value which signifies
a large difference between the predicted and output classification values. As the difference
between labeled and predicted points approaches zero our error decreases and our decision
boundary improves. Figure 9 shows the classification boundary at intermediate points in the
optimization.

3.1.1 Gradient Saturation

Gradient descent depends upon an assumption that away from an optimum, the gradient will
be large enough to be informative, but when close to an optimum, the gradient will be small
enough to limit the change in weight updates. When the assumption is not met, gradient
descent can perform very poorly. For this reason, optimization problems with saddle points,
or points of very small gradient that are nonetheless not optima, can be poor fits for gradient
descent. This is because a large number of iterations, each changing the parameters a very
small amount, would be required to move past the saddle point.



15

(a) 0 iterations (b) 500 iterations

(c) 1000 iterations (d) 2000 iterations

(e) 3000 iterations

Figure 9: Training is demonstrated as the production of a decision boundary using linear
classification with three features (x, y, 1). The data was made by generating points from
y = 4x + 2 + ε, where x is is a random sampling of points in the range [0, 4) and ε was
drawn from a normal distribution with mean 0 and standard deviation 1 to represent a noisy
system. If ε was positive, then the point was classified as a blue circle, but if negative, then
it was labeled as a red “x”. Gradient descent is applied to update the weights after each
iteration. Examples after 0, 500, 1000, 2000, and 3000 iterations are shown.
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We illustrate the slow rate of progress that can result in figure 9. As the solution ap-
proaches an optimum, the gradient decreases rapidly, resulting in much less progress per
iteration. It is important to note this illustration is not a saddle point, and so differs in that
sense from the problem with neural nets. Nonetheless, the figure demonstrates the amount
of work necessary to overcome an uninformative gradient.

Unfortunately, neural nets create nonconvex spaces with many saddle points and other
areas where the gradient is uninformative. Common activation functions such as logistic
sigmoids or hyperbolic tangents feature large areas of near-zero slope, inducing saddle points
in the overall objective function (2). This causes weight updates to be very small and
unproductive until past the saddle point; this is known as gradient saturation and is the
motivating issue behind our new gradient-free optimization algorithm of section 3.

3.1.2 Poor Scalability

In addition to computational problems associated with gradients, gradient based methods
also demonstrate poor scalability as the amount of data substantially increases and paral-
lelism becomes required [27, 7]. One of the major reasons neural nets and deep learning
have been so successful is the increasing amount of data available. As the amount of data
available for training increases, the better the model typically performs. However, while
updating gradient information in serial performs very well, it lacks properties which allow it
to scale well.

Gradient descent scales poorly as it relies on a large number of inexpensive minimiza-
tion steps with required communication between all nodes after each iteration; this frequent
communication quickly becomes expensive. Consequently, the utilization of highly special-
ized GPUs, where memory is shared, has become an effective way to combat communication
costs. GPUs allow for thousands of threads to simultaneously work on small batches of
data with minimal communication overhead. While this hardware is remarkable, it remains
highly expensive and specialized, and can still be overwhelmed by a large enough problem,
requiring communication.

Conversely, due to higher communication costs, CPU methods are best when they rely
on a small number of expensive minimization steps. The cost of minimization can then be
split among many nodes, allowing for the cost of communication to be amortized over a
substantial amount of computation.

3.2 ADMM for Neural Networks

We propose a CPU-based solution to address the problems mentioned previously by splitting
the objective function of each layer of a network into several terms. The Alternating Direction
Method of Multipliers (ADMM) method allows for the computation of each term separately
and in closed form, without gradient information. This changes the optimization problem
from iterations over a single difficult problem (updating weights based on gradients) into a
series of very easy problems. Additionally, several of these problems are easily parallelized,
leading to linear scaling across the number of compute cores, which has not been achieved
by more traditional approaches.
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For reference, we reprint the formulation (1) and the minimization problem (2).

φL = WLσL−1(. . . σ2(W2σ1(W1φ0)) . . . ).

minimize
W{0:L−1}

� (φL, t) .

The intuition behind the ADMM method is to decouple the weights from the activations.
Instead of feeding the product Wlφl−1 directly into the activation function σl, the result
is stored in a new variable zl = Wlφl−1. The output for a layer in the network can the be
represented as a vector of activations φl = σl (zl) . This reorganizes the optimization problem
as

minimize
W{l},φ{l},z{l}

� (zL, t)

subject to zl = Wlφl−1 for l = 1, 2, . . . , L

φl = σl (zl) for l = 1, 2, . . . , L− 1.

(9)

Note that solving (9) is equivalent to solving (2). However, rather than solving (9)
directly, an L2 term is added in order to relax the constraints. The unconstrained problem

minimize
W{l},φ{l},z{l}

� (zL, t) + βL ‖zL −WLφL−1‖2 +
L−1∑
l=1

[γl ‖φl − σl (zl)‖2 + βl ‖zl −Wlφl−1‖2]
(10)

can then be attacked, where γl and βl are constants which control the weight of each con-
straint. However, the constraints in (10) are only approximately enforced. In order to exactly
enforce the constraints in the last layer and induce stability, a Lagrange multiplier term, λ
is added to the final layer, which yields

minimize
W{l},φ{l},z{l},λ

� (zL, t) + 〈zL, λ〉

+ βL ‖zL −WLφL−1‖2 +
L−1∑
l=1

[γl ‖φl − σl (zl)‖2 + βl ‖zl −Wlφl−1‖2].
(11)

The split formulation (11) is designed so that it can be easily minimized through a series
of sub-steps, each of which can be solved for in closed-form. The ADMM algorithm updates
one set of variables at a time - either Wl, φl, or zl - while holding the others constant.

3.2.1 Minimization sub-steps

This section focuses on the update procedure for each variable in (11). The algorithm
proceeds by minimizing for Wl, φl, and zl, and then updating the Lagrange multipliers λ.

The minimization of (11) with respect to Wl is first considered. For each layer l, the
optimal solution minimizes ‖zl −Wlφl−1‖2. This is a least-squares problem whose solution

is given by Wl ← zlφ
†
l−1.

1

1† represents the pseudoinverse
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To update the activations, a process similar to the one done for the weights is performed.
However, the activation matrix φl appears in two penalty terms in (11). Therefore, the
minimization occurs over βl ‖zl+1 −Wl+1φl‖2 + γl ‖φl − σl (zl)‖2 for all φl while all other
variables are held fixed. The new value of φl is then given by

φl ←
(
βl+1W

T
l+1Wl+1 + γlI

)−1 (
βl+1W

T
l+1zl+1 + γlσl (zl)

)
. (12)

The update to zl requires the update

zl ← argmin
z

γl ‖φl − σl (z)‖2 + βl ‖z −Wlφl−1‖2 . (13)

This problem is non-convex and non-quadratic due to the non-linear term σ. Fortunately,
because the non-linearity σ works entry-wise on its argument, the entries in zl are de-coupled.
Furthermore, (13) is particularly easy to solve when σ is piecewise linear as it can then be
solved for in closed form. For instance, common piecewise linear choices for σ include rectified
linear units (ReLUs) and non-differentiable sigmoid functions given by

σrelu(x) =

{
x, if x > 0

0, otherwise
, σsig(x) =

⎧⎪⎨
⎪⎩
1, if x ≥ 1

x, if 0 < x < 1

0, otherwise

.

For such choices of σ, the minimizer of (13) can be computed simple if-then logic. For
more sophisticated choices of activation functions, such as a smooth sigmoid as discussed in
section 3.1, the sub-step can be solved with a lookup table of precomputed solutions because
each 1-dimensional problem only depends on two inputs.

After the minimization steps for Wl, φl, and σl, the Lagrange update is given by

λ← λ+ βL(zL −WLφL−1). (14)

Together these updates contribute to produce algorithm (1).

Algorithm 1 ADMM for Neural Nets

Input: training features {φ0}, and labels {y},
Initialize: allocate {φl}L=1

l=1 , {zl}Ll=1, and λ
repeat
for l = 1, 2, · · · , L− 1 do

Wl ← zlφ
†
l−1

φl←(βl+1W
T
l+1Wl+1 + γlI)

−1(βl+1W
T
l+1zl+1 + γlσl(zl))

zl ← argminz γl‖φl − σl(z)‖2 + βl‖zl −Wlφl−1‖2
end for
WL ← zLφ

†
L−1

zL ← argminz �(z, y) + 〈z, λ〉+ βL‖z −WLφL−1‖2
λ← λ+ βL(zL −WLφL−1)
until converged
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3.2.2 Distributed Implementation

The ADMM method is scaled using a data parallelization strategy in which different nodes
store different activations, outputs, and Lagrange multipliers corresponding to different sub-
sets of data. ConsiderN worker nodes across which the ADMM algorithm can be distributed.
For each layer, the data is broken into chunks for which each node can operate on. The ac-
tivation matrix, for example, is broken into subsets as φl = [φ1

l , φ
2
l , . . . , φ

N
l ]. The output

matrix zl and Lagrange multipliers λ decompose similarly.
The optimization sub-steps for updating φl and zl do not require any communication and

parallelize trivially. The weight matrix update requires the computation of pseudo-inverses
and products involving the matrices φl and zl. This can be done effectively using transpose
reduction strategies that reduce the dimensionality of matrices before they are transmitted
to a central node.

The weight update has the form Wl ← zlφ
†
l−1, where φ†l−1 = φT

l−1(φl−1φT
l−1)

−1. This
formulation allows the W update to decompose across nodes as

Wl ←
(

N∑
n=1

znl (φ
n
l−1)

T

)(
N∑

n=1

φn
l−1(φ

n
l−1)

T

)−1
.

Each of the individual products znl (φ
n
l−1)

T and φn
l−1(φ

n
l−1)

T are computed separately on
each node. The resultant matrices can then be summed utilizing a single reduce operation
to the central server node. Because the number of features is frequently much smaller than
the number of data points, the matrix φn

l−1(φ
n
l−1)

T is significantly smaller than φn
l−1 itself. As

the transmission of data to nodes is often a bottleneck, reducing the amount of information
required to be transmitted can substantially reduce the run time. Once the products on
each node have been formed and reduced onto a central server, the central node computes
the inverse of φl−1φT

l−1, updates Wl, and then broadcasts the result to the worker nodes.
The update (12) decomposes trivially across workers, with each worker computing

φn
l ←

(
βl+1W

T
l+1Wl+1 + γlI

)−1 (
βl+1W

T
l+1z

n
l+1 + γlφl (z

n
l )
)
.

Each node maintains a full representation of the entire weight matrix, and can formulate its
own local copy of the matrix inverse (βl+1W

T
l+1Wl+1 + γlI)

−1.
Like the update to the activations, the update for zl trivially parallelizes where each work

node solves
znl ← argmin

z
γ‖φn

l − σl(z)‖2 + β‖z −Wlφ
n
l−1‖2. (15)

Each worker node computes Wlφ
n
l−1 using local data, and then updates each of the (decou-

pled) entries in znl by solving a 1-dimensional problem in closed form.
The Lagrange multiplier update also trivially splits across nodes, with worker n comput-

ing
λn ← λn + β(znL −WLφ

n
L−1) (16)

using only local data.
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3.3 Experiments

For this section, we compare the results of our ADMM method to frequently-used gradient
based approaches, including stochastic gradient descent (SGD), conjugate gradients, and L-
BFGS on two benchmark classification tasks. On these two tasks, we illustrate the success of
ADMM using two graphs. The first illustration shows the linear scaling of ADMM by varying
the number of cores computing in parallel and clocking the compute time to a predetermined
accuracy threshold. The second illustration demonstrates the test accuracy as a function of
time for each of the optimization methods.

For the purpose of the testing, the ADMM method was compared against the gradient-
based methods of stochastic gradient descent (SGD), conjugate gradients, and L-BFGS. In
section 3.1, a simple gradient descent method was introduced for convex optimization prob-
lems. However, when working with many parameters, the space is nearly always nonconvex
and is scattered with many local optima and saddle points which can make learning difficult.
Furthermore, gradient descent is often limited by the learning rate. If the learning rate is
too large, the gradients diverge. If it is too small, optimization is slow. The alternative
gradient methods to standard gradient descent allow for quicker convergence and the ability
to alleviate some of the problems typically associated with nonconvex spaces.

Each of the gradient methods mentioned were tested using open source implementations
in Lua with Torch. This allowed for testing using these standard approaches to occur on a
GPU where they are fastest. In contrast, the ADMM method was run on a variable number
of CPUs. Because ADMM is sufficiently different from other optimization approaches, Torch
or other neural net libraries were not options, causing us to implement neural nets from the
ground up in Python.

The ADMM method was tested on a Cray XC30 supercomputer with Ivy Bridge pro-
cessors with communication between cores done using MPI. SGD, conjugate gradients, and
L-BFGS were implemented on NVIDIA Tesla K40 GPUs. Prior to testing, each of these
methods underwent a thorough grid hyperparameter search to determine the optimal set-
ting of running conditions which would produce the best results. In each of the graphs below,
the time graph only includes the time spent optimizing, not the time to load the data or set
up the network.

Experiments were run on two datasets. The first was the Google Streetview House
Numbers (SVHN) dataset previously mentioned. Histogram of Gradients (HOG) features
were utilized to classify pictures of 0s or 2s. The “extra” portion of the dataset was used
bringing the total number of training points to 129,090 and 5,893 testing points, each with
648 features [23]. The second dataset is the much larger, and much more difficult HIGGS
dataset [2]. The HIGGS dataset contains several features measured by particle detectors
during experiments in the Large Hadron Collider, along with a classification as to if a Higgs
Boson was indicated in that experiment. The training set consists of 10,500,000 data points
while the testing set consists of 500,000 data points each with 28 features.

For the first experiment with the SVHN dataset, we trained a neural network with two
hidden layers and ReLU activation functions. The first hidden layer had 100 nodes while
the second had 50. This problem was fairly easy for a neural net to solve as the testing
accuracy quickly rose near to its final value. However, the problem did not require much
data and gradient methods were suitable to solve the problem sufficiently. This made the
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problem well suited to GPU based implementations. Although the GPU methods typically
reached convergence faster (Figure 10b), the ADMM method provided promising results.
The experiment demonstrated ADMM scaled linearly with an increase in the number of
nodes (Figure 10a), allowing it to compete with GPUs when a sufficient number of cores had
been used. Every gradient-based approach has shown diminishing returns with additional
cores, until the time needed to optimize actually begins to rise. In comparison, ADMM
neatly takes approximately half the time when distributed across twice the cores.

In figure 10b, we demonstrate the competitive performance of ADMM by graphing each
methods test set accuracy as a function of time. With 1024 cores, ADMM was able to meet
the 95% threshold in 13.3 seconds. After an extensive hyperparameter search, the GPU
methods did demonstrate faster convergence with SGD converging at an average of 28.3
seconds, L-BFGS in 3.3 seconds, and conjugate gradients in 10.1 seconds. With the small
dataset, we were unable to use enough cores to overcome the benefits of the GPU, but were
nonetheless able to demonstrate its competitiveness.

The second experiment was performed on the much larger and more difficult Higgs
dataset. For this task, we optimized a neural net with a hidden layer of 300 nodes with
ReLU activation functions, as suggested by [2]. The graphs demonstrate the time to an
accuracy threshold of 64%. This value was chosen as it was a threshold that all of the
methods could reliably meet when tested over many trials. Figure 11a demonstrates the
scalable nature of ADMM by drastically reducing the amount of training time required with
an increase in cores and again demonstrating strong linear scaling properties.

For this much more difficult problem, the scaling properties of ADMM allow it to reach
convergence much faster than the alternative methods. ADMM reaches convergence the
fastest in 7.8 seconds as shown in figure 11b. In contrast, L-BFGS reached convergence in
181 seconds2 while conjugate gradients required 44 minutes. SGD never reached the 64%
threshold on the testing set in 7 hours of training. For very large, difficult problems, these
results suggest that the linear scaling of ADMM enables this method to leverage the large
number of cores to dramatically out-perform GPU implementations.

4 Future Work

We believe the ADMMmethod implemented was a good first attempt in trying to make CPUs
a more viable source for implementers of neural and deep network architectures. However,
there are limitations in our current algorithm which should be explored. In this section, we
discuss some of those limitations along with ideas for directions of research.

First, the number of features in a layer had to be limited due to the inverse operation
on the otherwise large φlφ

T
l matrix which appears in the update of the matrix Wl+1. Each

node i must compute and communicate its component φi
lφ

iT
l ; the sum of these must then

be inverted. Normally, kl+1 is much smaller than the number of data points, making this
communication and O(k3

l+1) inversion fast. However, this assumption is not always valid,
making this step expensive or memory prohibitive. Second, the algorithm does not seem
to suit large deep network architectures. The algorithm is deterministic and will ensure the

2It is worth noting that though L-BFGS required substantially more time to reach 64% than ADMM, it
was the only method to produce a superior classifier, doing as well as 75% accuracy on the test set
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(a) Time required for ADMM to reach
95% test accuracy when parallelized
over varying numbers of cores. This
problem was not large enough to support
parallelization over many cores, yet the ad-
vantages of scaling are still apparent (note
the x-axis is scaled logarithmically). How-
ever, in comparison, on the GPU, L-BFGS
reached this threshold in 3.2 seconds, conju-
gate gradients in 9.3 seconds, and stochastic
gradient descent in 8.2 seconds

(b) Test set predictive accuracy as
a function of time in seconds for
ADMM on 2,496 cores (blue), in addition to
GPU implementations of conjugate gradients
(green), SGD (red), and L-BFGS (cyan).

Figure 10: ADMM Street View House Numbers Results

error always decreases in value. As a result, in the complex spaces induced by deep networks,
ADMM frequently very quickly settles on a local minimum which is far from globally optimal.
We discuss the introduction of stochasticity in an attempt to avoid these local minima.

4.1 Increasing the Number of Features

The current ADMM method works in a distributed manner allowing for much of the work to
be done on many compute nodes, as is illustrated in Algorithm 1. However, if the number of
features in a given layer kl+1 is large, the current algorithm breaks down due to the O(k2

l+1)
storage requirement in every node due to the computation of φlφ

T
l required in the weight

update, and the O(k3
l+1) matrix inversion computation of a kl+1 × kl+1 matrix. This makes

running this algorithm with a large number of features computationally expensive and often
memory prohibitive. However, the algorithm can be improved by utilizing the Nyström and
Woodbury approximations [17] as long as the φlφ

T
l matrix is low-rank.

4.1.1 Low-rank Requirement

A matrix is said to be rank r if there a set of r columns for which the span of the selected
columns and the original matrix are the same; if r is much smaller than the actual number of
columns k, the matrix is said to be “low-rank.” Low-rank matrices can often be approximately
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(a) Time required for ADMM to reach
64% test accuracy when parallelized
over varying numbers of cores. L-BFGS
on a GPU required 181 seconds, and con-
jugate gradients required 44 minutes. SGD
never reached 64% accuracy.

(b) Test set predictive accuracy as a
function of time for ADMM on 7200
cores (blue), conjugate gradients (green),
and SGD (red). Note the x-axis is scaled
logarithmically.

Figure 11: ADMM Higgs Results

reconstructed from a smaller subset of their columns. In scenarios where matrices are full
rank, the matrix cannot be well approximated with a subset of columns as all columns of
the matrix are required to produce the span defined by the original matrix. Therefore, the

Nyström and Woodbury approximations only become useful if
(
φlφ

T
l

)−1
is of rank r, where

r  k.

4.1.2 Algorithm

For simplicity of discussion, we describe the algorithm for a neural net consisting of a single
neuron - it expands easily to more complex networks.
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R

C φφT

Figure 12: A depiction of the matrices C, R, and φφT where R ⊆ C ⊆ φφT . R is p × p, C
is k × p, and φφT is k × k.

Algorithm 2 New ADMM Method

1: for each node i ∈ N , given φi, ti, and W do
2: Compute Ci

3: end for
4: if server node then
5: C =

∑
i Ci

6: R← C[: l][: l]
7: end if
8: while not converged do
9: for each node i ∈ N do
10: Compute ziφiT

11: end for
12: if server node then
13: zφT =

∑
i z

iφiT

14: W = zφTC(R−1 + CTC)−1CT

15: end if
16: end while

The goal of the new algorithm, Algorithm (2), will be to avoid this expensive O(k2) storage
and O(k3) computation. In order to do so, two new matrices are introduced, R and C. Let
R ⊆ C ⊆ φφT , where C is defined as a k×p matrix (p k), and R is defined to be p×p (see
Figure 12). Ideally, φφT is low rank, and the span of the columns in C would be equivalent
to the span of the columns in φφT . A sampling technique is utilized to choose appropriate
columns to comprise C.

The Nyström approximation states that the φφT matrix can be approximated by comput-
ing CR−1CT . The Woodbury method gives the equality (CR−1CT )−1 = C(R−1+CTC)−1CT .
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By utilizing both methods, the avoidance of computing and inverting a k×k matrix is made.
The largest matrix that now has to be computed is a k × p matrix where p k (2).

This approach promises to save large amount of communication and computation time
for problems with large feature sets.

4.2 Application to Deep Nets

While ADMM performs well on shallow networks, additional work will need to be done
in order to allow for the application of ADMM to deep nets. The ADMM method allows
for quick convergence because it is guaranteed to decrease error in non-convex spaces, but
this also negatively impacts the algorithm by making it extremely likely to end up in a
local minimum. The introduction of stochasticity may alleviate the problem by allowing
for random steps that do not necessarily decrease the error function but do, potentially, get
us closer to the global minimum as opposed to one of the many local minima. Stochastic
ADMM has shown success in non-convex contexts other than neural nets [25].

There are several approaches we can take to solve this problem including training on
random subsets of data. Exploration into these topics will need to be done to see where
stochasticity can be introduced and where it is effective. In any case, it should help improve
the algorithm by allowing for a solution to the local minima problem.

5 Conclusion

Neural nets have shown remarkable success in classification and regression problems. How-
ever, there is much improvement that needs to be made in order to speed up the rate at
which training can occur. Through the introduction of kernel based weight initialization and
an improved ADMM method, we are showing how to speed up the training process while
maintaining at least the same level of prediction accuracy. Informed weight initialization
provides the opportunity to supplement a layer in deep nets with a nearly-trained set of
weights, while ADMM allows for much faster training in a highly distributed fashion. Fur-
thermore, while we have shown improvement, there are still improvements than can be made
by allowing for greater numbers of features in training and applying ADMM to deep nets.



26

References

[1] A Aizerman, Emmanuel M Braverman, and Li Rozoner. Theoretical foundations of
the potential function method in pattern recognition learning. Automation and Remote
Control, 25:821–837, 1964.

[2] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in
high-energy physics with deep learning. Nature Communications, 5, 2014.

[3] Christopher M Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., 2006.

[4] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computa-
tional Learning Theory, pages 144–152. ACM, 1992.
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